The enzyme arylsulfatase A (ASA) occurs in solution as dimer ( α 2) above pH 6 and associates to octamers ( α 2) 4 below pH 6. The crystal structure of ASA suggests that the ( α 2)-( α 2) 4 equilibrium is regulated by protonation/deprotonation of Glu-424 located at the interface between ( α 2) dimers in the octamer. The reason for this assumption is that Glu-424 can be in two different conformers where it forms an intra or intermolecular hydrogen bond, respectively. In the present study we investigate this protein association process theoretically. The electrostatic energies are evaluated by solving the Poisson-Boltzmann equation for the inhomogeneous dielectric of the protein-water system for the dimer and octamer configurations. If a conventional surface energy term is used for the nonelectrostatic interactions, the absolute value of free energy of association fails to agree with experiment. A more detailed treatment that explicitly accounts for hydrophilic and hydrophobic character of the amino acids in the dimer-dimer interface of the octamer can explain this discrepancy qualitatively. The pH dependence of the computed association energy clearly demonstrates that the octamer is more stable at low pH if Glu-424 becomes protonated and forms an intermolecular hydrogen bond. We found a slight preference of Glu-424 to be in a conformation where its acidic group is fully solvent-exposed in the dimer state to form hydrogen bonds with water molecules. Application of the proton linkage model to calculate the association energy from the simulated data yielded results identical to the one obtained from the corresponding direct method.
Read full abstract