The embryonic development of synapses in the rostral nucleus of the solitary tract (rNST) was investigated in rat to determine when synapses begin to function. Using a brain slice preparation we studied appearance of synaptic receptors on second order rNST neurons and investigated the development of postsynaptic responses elicited by afferent nerve stimulation. Prenatal excitatory and inhibitory synaptic responses were recorded as early as E14. Glutamatergic and GABAergic postsynaptic responses were detected as early as E16. Both NMDA and AMPA receptors contributed to glutamatergic postsynaptic responses. GABAergic postsynaptic responses resulted primarily from activation of GABAA receptors. However, functional GABAC receptors were also demonstrated. A glycinergic postsynaptic response was not found although functional glycine receptors were demonstrated at E16. Solitary tract (ST) stimulation-evoked EPSCs, first detected at E16, were eliminated by glutamate receptor antagonists. ST-evoked IPSPs, also detected at E16, were eliminated by GABAA receptor antagonist. Thus, considerable prenatal development of rNST synaptic connections occurs and this will ensure postnatal function of central taste processing circuits.