Inhibition of cholinesterases, combined with antioxidant activity, metal-chelating capacity, and neuroprotection, is recognized as an effective multitarget therapy for the treatment of Alzheimer's disease (AD). Based on our in-house thiosemicarbazone-acridine compounds, this study recognized these derivatives as possible multi-target-directed ligand (MTDL). Initial screening against cholinesterases identified CL-01, which exhibited a promising IC50 value of 0.71 μM against butyrylcholinesterase (BChE). Twelve new derivatives were designed based on CL-01 aiming to retain the BChE inhibitory activity while incorporating a MTDL profile, including antioxidant properties and metal-complexing abilities. Among the new derivatives, CL-13 maintained a good BChE inhibition (IC50 = 1.15 μM) with improved selective index against acetylcholinesterase (SI = 9.2). The acridine nucleus was important for the activity, as its saturated tetrahydroacridine analogue (TA-01) showed a decrease in cholinesterases inhibition potencies and altered the mode of inhibition, revealing for the first time distinct functional roles for the two nuclei. Moreover, CL-13 emerged as a promising lead compound, demonstrating interesting antioxidant activity (DPPH EC50 = 47.01 μM), chelating capacity of biometals involved in Aβ aggregation and/or oxidative stress, and a lack of neurotoxicity at 50 μM in SH-SY5Y cells. It also exhibited neuroprotective effects in an in vitro oxidative stress model induced by H2O2. Finally, in vivo experiments confirmed that CL-13 effectively reversed scopolamine-induced cognitive impairment, without affecting locomotor activity in the mice.
Read full abstract