Chemical genetics is a multidisciplinary research method. In this study, it is used to screen compounds that promote aluminum-induced malate secretion in Arabidopsis thaliana. Inhibition of p38 mitogen-activated protein kinase (p38 MAPK; LY2228820) significantly increased the transcription of Arabidopsis thaliana aluminum-activated malate transporter 1 (AtALMT1) and sensitive to proton rhizotoxicity 1 (STOP1)-regulated genes, multidrug and toxic compound extrusion and aluminum sensitive 3, but not AtSTOP1 and the Al-biomarker genes At3g28510, At5g13320, suggesting that LY2228820 increased the early expression of STOP1-regulated genes without affecting AtSTOP1 expression. Inhibition of p38 MAPK (LY2228820) and Aurora A (MLN8237) increased aluminum-activated malate transport via AtALMT1, suggesting that both MLN8237 and LY2228820 interfere with AtALMT1 activity. An increase in root elongation was also observed in Arabidopsis after applying compounds LY2228820 and MLN8237. Thus, both LY2228820 and MLN8237 may play important roles in alleviating the inhibitory effects of aluminum on roots.