Abstract
The simultaneous targeting of neuroinflammation and cholinergic hypofunction, the key pathological changes in Alzheimer's disease (AD), is not addressed by drugs currently in clinical trials, highlighting a critical therapeutic gap. We propose that dual-acting small molecules that inhibit butyrylcholinesterase (BChE) and mitogen-activated protein kinase p38α (p38α MAPK) represent a novel strategy to combat AD. This hypothesis is supported by cellular and animal studies as well as in silico modeling showing that it is possible to act simultaneously on both enzymes. Amyloid beta (Aβ) plaques trigger a pro-inflammatory microglial response that overactivates p38α MAPK, leading to increased Aβ synthesis, tau hyperphosphorylation, and altered synaptic plasticity. Overactivated microglia exacerbate neuroinflammation and cholinergic degeneration, ultimately leading to cognitive impairment. Structural similarities between the binding sites of BChE and p38α MAPK provide a promising basis for the development of dual inhibitors that could alleviate AD symptoms and address the underlying pathology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.