The effect of lonidamine, an antispermatogenic and antitumor drug, on the oxygen consumption, ATPase activity, and redox state of the electron carriers of Ehrlich ascites tumor mitochondria has been studied. Lonidamine inhibits ADP- and uncoupler-stimulated respiration on various NAD- and FAD-linked substrates, but does not affect state 4 respiration. Experiments to determine its site of action showed that lonidamine does not significantly inhibit electron flow through cytochrome oxidase. Electron flow through site 2, the ubiquinone-cytochrome b-cytochrome c 1 complex, also was unaffected by lonidamine, which failed to inhibit the oxidation of duroquinol. Moreover, inhibition of electron flow through site 2 was also excluded because of the inability of the N,N,N′,N′-tetramethyl- p-phenylenediamine bypass to relieve the lonidamine inhibition of the oxidation of pyruvate + malate. The F 0F 1ATPase activity and vectorial H + ejection are also unaffected by lonidamine. The inhibition of succinate oxidation by lonidamine was found to take place at a point between succinate and iron-sulfur center S3. Spectroscopic experiments demonstrated that lonidamine inhibits the reduction of mitochondrial NAD + by pyruvate + malate and other NAD-linked substrates in the transition from state 1 to state 4. However, lonidamine does not inhibit reduction of added NAD + by submitochondrial vesicles or by soluble purified NAD-linked dehydrogenases. These observations, together with other evidence, suggest that electron transport in tumor mitochondria is inhibited by lonidamine at the dehydrogenase-coenzyme level, particularly when the electron carriers are in a relatively oxidized state and/or when the inner membrane-matrix compartment is in the condensed state. The action of lonidamine in several respects resembles the selective inhibition of electron transport in tumor cells produced by cytotoxic macrophages.
Read full abstract