The actions of actin-based microfilaments in cell motility suggest a possible role in the mechanism of fast axonal transport, but the pharmacological data evaluating their role in this process are equivocal. Moreover, microfilaments are difficult to preserve and identify in ultrastructural studies, so the organization and function of axonal actin has remained uncertain. We have now evaluated the role of actin microfilaments in intracellular transport of membranous organelles using video-enhanced contrast microscopy and gelsolin to analyse fast axonal transport directly in isolated axoplasm from the squid giant axon. With this preparation it is possible to perfuse axoplasm with large molecules that do not cross the plasmalemma, while controlling cation levels. The 90,000-molecular weight protein gelsolin depolymerizes actin microfilaments in micromolar Ca2+, but not in the absence of Ca2+. Axonal transport of membranous organelles has previously been shown to be unaffected by levels of Ca2+ up to 10 microM. In the presence of EGTA, gelsolin has no effect on the movement of membranous organelles, but in the presence of 10 microM Ca2+ it completely blocks transport of all membranous organelles. No changes in the organization of the axoplasm were detected. These results and results using other probes for actin are consistent with the hypothesis that actin-based microfilaments are involved in the movement of membranous organelles in the axon.