Lagopsis supina (Steph. ex Willd.) lk. -Gal. ex Knorr. has been used as a diuretic agent in China for centuries with limited scientific evidence. This study investigated the diuretic efficacy and underlying mechanism of a macroporous adsorption resin with 30% ethanol elution fraction from L. supina (LSC) in saline-loaded rats and to identify its phytochemicals by ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-qTOF-MS/MS). As a result, 18 phenylpropanoids, 14 flavonoids and 15 others were identified in LSC, among which stachysoside A and acteoside could be the main bio-active constituents responsible for the diuretic effect. In parallel, the daily administration of LSC (16, 32 and 64 mg/kg) markedly promoted urinary excretion after 2 h of treatment. Moreover, LSC had no effect on urinary Na+ and K+ concentrations, as well as on serum Na+-K+-ATPase activity. Meanwhile, LSC significantly decreased the serum levels of angiotensin II (Ang II), anti-diuretic hormone (ADH), aldosterone (ALD), aquaporin (AQP) 1, AQP2 and AQP3, suppressed renal AQP1, AQP2, and AQP3 mRNA expressions, down-regulated AQP1, AQP2 and AQP3 protein levels, and up-regulated serum atriopeptin (ANP) level in a dose-dependent manner. These findings suggest that LSC has acute and prolonged diuretic effects by inhibiting the AQPs, RAAS, and upregulation of atriopeptin in saline-loaded rats, and this finding support LSC as a novel diuretic agent.
Read full abstract