Aim This study aims to comprehensively evaluate the effects of ferulic acid (FA) on acetylcholinesterase (AChE) enzyme activity and amyloid beta (Aβ) peptide plaque formation in an in vitro model of Alzheimer's disease (AD). Background ADis a progressive neurological condition marked by disrupted cholinergic signaling, accumulation of Aβ peptide, and tau protein hyperphosphorylation. Currently, no direct anti-Alzheimer drug that effectively prevents the cognitive decline from AD has been reported. To combat this, a multi-target drug addressing several molecular aspects would be ideal for AD. Natural compounds are preferred over synthetic drugs due to their accessibility, cost-efficiency, and lower toxicity The proven association between polyphenolconsumption and the prevention of AD has led to the investigation of the effect of FA, a polyphenolic compound, on acetylcholinesterase enzyme activity and Aβ peptide formation, the key targets of AD. Materials and method The free radical scavenging ability of FA was assessed by xanthine oxidase inhibitory activity. Furthermore, FA was also evaluated for its inhibitory activity against AChE enzyme and amyloid beta peptide formation to evaluate the neuroprotective potential of FA. Results The results showed that FA has the potential to be an AChE inhibitor, thus helping in blocking the activity of AChE and also reducing the incidence of amyloid beta plaque formation. Furthermore, the compound also exhibited a significant antioxidant property which was demonstrated by the xanthine oxidase enzyme inhibitory effect. Conclusion From the observed results, FA has significant antioxidant and neuroprotective effects which are compared with those of their respective standards. More research is required to determine the efficacy and safety of this compound as a treatment for neurodegenerative diseases like AD because the precise mechanism and degree of its AChE inhibitory effects in the brain are still elusive. A potent, selective, and effective drug is desperately needed to treat patients with AD and those at risk of developing the disease.