NAFLD is gaining recognition as a complex, multifactorial condition with suspected associations with endocrine disorders. This investigation employed MR analysis to explore the potential causality linking NAFLD to a spectrum of endocrine diseases, encompassing T1D, T2D, obesity, graves' disease, and acromegaly. Our methodology leveraged a stringent IV selection process, adhering to the STROBE-MR guidelines. The MR analysis was conducted utilizing three distinct methods: IVW, WM, and MR-Egger. The IVW method was prioritized as the primary analytical approach. We conducted MR analyses to analyze the causal relationship between NAFLD and metabolic disorders. We also examined 1400 metabolites implicated in NAFLD. Metabolic pathway analysis was performed using the MetaboAnalyst database. The findings indicated that T2D (OR = 1.211, 95%CI: 0.836-1.585) and obesity (OR = 1.245, 95%CI: 0.816-1.674) are associated with an increased risk of NAFLD development. Further exploration into the the 1400 metabolites revealed that cys-gly and diacetylornithine are predictive of NAFLD, T2D, and obesity, whereas isovalerylcarnitine exhibited an inverse association, potentially inhibiting disease development. Metabolic pathways involving alanine, aspartate, and glutamate metabolism were identified as pivotal regulators in the pathophysiology of NAFLD, T2D, and obesity. The present study generated innovative viewpoints on the etiology of NAFLD. Our findings underscore the significant role of T2D and obesity in NAFLD pathogenesis through metabolic pathways, presenting opportunities for targeted therapeutic strategies and warranting further investigation. The online version contains supplementary material available at 10.1007/s13534-024-00442-8.
Read full abstract