Background: Prostate cancer is a common male malignancy and the leading cause of cancer death in men. Long non-coding RNAs (lncRNAs), microRNA (miRNAs) and mRNAs networks mediate prostate cancer progression. Herein, we investigated the functions of lncRNA AC008972.1 and its regulatory mechanism in prostate cancer. Materials and Methods: The expression levels of lncRNA AC008972.1, miR-143-3p, and TAOK2 were detected in prostate cancer tissues and cell lines by reverse transcription-quantitative polymerase chain reaction. PC3 and LNCaP cells were used to establish lncRNA AC008972.1-knockdown, miR-143-3p-overexpressing, and thousand-and-one-amino acid 2 kinase (TAOK2)-downregulated cells. Cell viability was examined by MTT assays and cell proliferation was detected by clone formation assay. Cell migration and invasion were detected by wound scratch assay and transwell chamber assay. The apoptosis rate was analyzed by flow cytometry. The protein expression was detected by Western blot assay. The RNA interaction was explored and validated by RNA binding protein immunoprecipitation (RIP) assay and dual luciferase activity assay. A mouse xenograft model was established to investigate the effect of lncRNA AC008972.1 on prostate cancer progression. Results: High expression of lncRNA AC008972.1 was associated with low overall survival in prostate cancer patients. Downregulation of lncRNA AC008972.1 suppressed prostate cancer progression by inhibiting cell viability, proliferation, migration, and invasion, in addition to the EMT process, whereas cell apoptosis was significantly promoted. LncRNA AC008972.1 bound with miR-143-3p and negatively regulated miR-143-3p expression. MiR-143-3p overexpression suppressed prostate cancer malignant behaviors in vitro. TAOK2 expression was decreased by miR-143-3p through the complementary targeting of TAOK2 mRNA. Downregulation of lncRNA AC008972.1 mitigated prostate cancer malignant behaviors in vitro based on miR-143-3p/TAOK2 node. Furthermore, the data of xenograft model experiment showed that inhibition of lncRNA AC008972.1 suppressed tumor growth in vivo. Conclusions: Knockdown of lncRNA AC008972.1 inhibits prostate cancer cell growth via downregulation of TAOK2 induced by miR-143-3p. LncRNA AC008972.1 acts as an oncogene in the progression of prostate cancer and may provide a novel therapeutic target for prostate cancer.
Read full abstract