Spinal cord injury (SCI) is the most severe result of spine injury, but no effective therapy exists to treat SCI. We have previously shown that the E3 ubiquitin ligase Two RING fingers and DRIL 1 (Triad1) promotes neurite outgrowth after SCI. However, the mechanism by which Triad1 affects neuron growth and the potential involvement of its ubiquitination activity is unclear. Neuroprotective cytokine pleiotrophin (PTN) can promote microglia proliferation and neurotrophic factor secretion to achieve neuroprotection. We find using immunostaining and behavioral assays in rats that the expression of Triad1 and the PTN was peaked at 1 day after SCI and Triad1 improved motor function and histomorphological injury after SCI. We show using flow cytometry and astrocyte/neuronal coculture assays that Triad1 overexpression promoted PTN protein levels, neurotrophic growth factor (NGF) expression, brain-derived neurotrophic factor (BDNF) expression, astrocyte and neuronal viability, and neurite outgrowth but suppressed astrocyte apoptosis, while shRNA-mediated knockdown of Triad1 and PTN had the opposite effects. Ubiquitin ligase murine double mutant 2 (MDM2) has previously been demonstrated to participate in the process of neurite outgrowth and mediate ubiquitination of p53. Furthermore, we demonstrate overexpression of MDM2 downregulated PTN protein levels, NGF expression and BDNF expression in astrocytes, and inhibited neurite outgrowth of neurons. In addition, MDM2 facilitated PTN ubiquitination, which was reversed by Triad1. Finally, we show simultaneous sh-PTN and MDM2 overexpression attenuated the neurite outgrowth-promoting effect of Triad1 overexpression. In conclusion, we propose Triad1 promotes astrocyte-dependent neurite outgrowth to accelerate recovery after SCI by inhibiting MDM2-mediated PTN ubiquitination.