Despite repeated proposals to utilize superconducting magnets in space since at least the 1970s, examples of their use remain scant. One of the technical challenges is to maintain suitable cryogenic temperatures on a spacecraft. This challenge can be alleviated by the use of flux pumps to reduce the required cryogenic cooling power needed to energize the superconducting magnet. This paper describes the design and initial test results of the flux pump to fulfill the requirements of the Hēki mission that will operate a high-temperature superconducting magnet on an external platform of the International Space Station. A transformer-based, self-rectifier architecture was chosen for the flux pump. An effective circuit model used to design its electromagnetic properties and finite-element modelling used in its mechanical and thermal design. Liquid nitrogen tests were used to demonstrate that the electrical performance of the flux pump meets requirements. Higher-fidelity tests using flight-like copies of the hardware and software were undertaken and validated the thermal modelling. These tests also featured the continuous operation of the flux pump in a conduction-cooled setting for over 100 hours, reflecting an inherent reliability of this technology. Whilst further testing and flight qualification remains to be completed, we anticipate an on-orbit demonstration of this flux pump technology in February 2025. Such a demonstration will signal a maturing of this emerging superconducting technology for both in-space and terrestrial applications.
Read full abstract