Accurate identification of meat species is critical to prevent economic fraud and safeguard public health. The use of inappropriate meat sources, such as murine, poses significant health risks because of potential contamination with pathogens and allergens, leading to foodborne illnesses. The present study aimed to develop a novel real-time enzymatic recombinase amplification (ERA) method for the rapid and specific detection of murine DNA in meat products. A novel ERA primer and probe set was designed, targeting a murine-specific single-copy nuclear gene identified through bioinformatics analysis. The assay demonstrates high specificity, showing no amplification in commonly consumed meats, other animals or major crops. Additionally, it exhibits remarkable sensitivity, detecting as few as five copies of murine genomic DNA. For practical application, the ERA method could effectively identify mouse DNA in laboratory-prepared samples at concentrations as low as 0.5% and also quantify samples with mouse DNA content as low as 5%. It also accurately detects the presence of murine-derived ingredients in commercially available meat products. The detection process is straightforward, utilizing a simple isothermal device for incubation, blue light excitation and a smartphone camera for result interpretation. This rapid analysis can be completed within 20 min. The newly developed real-time ERA method provides a valuable tool for standardizing meat trade practices, promoting food safety and enhancing consumer confidence in the authenticity of meat products. © 2024 Society of Chemical Industry.
Read full abstract