In this paper, we consider a strong global search algorithm which exhibits strong exploration ability in unmanned aerial vehicle (UAV)-aided networks. UAVs in wireless communication have aroused great interest recently due to its low cost and flexibility in providing wireless connectivity in areas without infrastructure coverage. Artificial bee colony algorithm is a powerful approach for such a scene. However, due to its one-dimensional and greedy search strategy, it still suffers slow convergence speed. In the traditional version, three types of bees, including employed bees, onlooker bees, and scouts, are employed and they cooperate with each other to find the best food source position. Though different roles, these three types of bees play, there is no difference of division within the internal of each type of bees. Considering this phenomenon, this paper proposes a modified artificial bee colony algorithm with intellective search and special division (ABCIS) to enhance its performance, where different employed bees and different onlooker bees use different search strategies to search for food sources. Besides, the greedy selection method is also abandoned and the food sources’ positions are updated at each iteration. Under this circumstance, the whole population’s experience is fully utilized to guide bee’s search. Finally, to testify the proposed algorithms’ competitiveness, a series of benchmarks are adopted, and the experimental results demonstrate its superior performance among other state-of-the-art algorithm in UAV-aided networks.
Read full abstract