We have employed infrared multiple-photon dissociation (IR-MPD) spectroscopy together with density functional theory (DFT) calculations to study the interaction of series of subnanometer sized manganese oxide clusters, MnxOy+ (x = 1-6, y = 0-9) with acetic acid (HOAc) and methyl acetate (MeOAc). Reaction with HOAc leads to strongly cluster size and composition dependent IR-MPD spectra, indicating molecular adsorption on MnOx+ clusters and thermodynamically favorable but kinetically hampered HOAc dissociation (deprotonation) on Mn2O4+ and Mn3O5+. Other cluster sizes exhibit the preferred formation of a dissociative bidentate chelating structure. In contrast to HOAc, all clusters bind MeOAc via the carbonyl group as an intact molecule, and dissociation appears to be kinetically hindered under the given experimental conditions.
Read full abstract