Despite extensive morphological and molecular studies, the phylogenetic interrelationships within the infraorder Brachyura and the phylogenetic positions of many taxa remain uncertain. Studies that used a limited number of molecular markers have often failed to provide sufficient resolution, and may be susceptible to stochastic errors and incomplete lineage sorting (ILS). Here we reconstructed the phylogenetic relationships within the Brachyura using transcriptome data of 56 brachyuran species, including 14 newly sequenced taxa. Five supermatrices were constructed in order to exclude different sources of systematic error. The results of the phylogenetic analyses indicate that Heterotremata is non-monophyletic, and that the two Old World primary freshwater crabs (Potamidae and Gecarcinucidae) and the Hymenosomatoidea form a clade that is sister to the Thoracotremata, and outside the Heterotremata. We also found that ILS is the main cause of the gene-tree discordance of these freshwater crabs. Divergence time estimations indicate that the Brachyura has an ancient origin, probably either in the Triassic or Jurassic, and that the majority of extant families and superfamilies first appeared during the Cretaceous, with a constant increase of diversity in Post-Cretaceous-Palaeogene times. The results support the hypothesis that the two Old World freshwater crab families included in this study (Potamidae and Gecarcinucidae) diverged from their marine ancestors around 120 Ma, in the Cretaceous. In addition, this work provides new insights that may aid in the reclassification of some of the more problematic brachyuran groups.