Landslides are common hazardous geological events, and accurate and efficient landslide identification methods are important for hazard assessment and post-disaster response to geological disasters. Deep learning (DL) methods based on remote sensing data are currently widely used in landslide identification tasks. The recently proposed segment anything model (SAM) has shown strong generalization capabilities in zero-shot semantic segmentation. Nevertheless, SAM heavily relies on user-provided prompts, and performs poorly in identifying landslides on remote sensing images. In this study, we propose a SAM-based cross-feature fusion network (SAM-CFFNet) for the landslide identification task. The model utilizes SAM’s image encoder to extract multi-level features and our proposed cross-feature fusion decoder (CFFD) to generate high-precision segmentation results. The CFFD enhances landslide information through fine-tuning and cross-fusing multi-level features while leveraging a shallow feature extractor (SFE) to supplement texture details and improve recognition performance. SAM-CFFNet achieves high-precision landslide identification without the need for prompts while retaining SAM’s robust feature extraction capabilities. Experimental results on three open-source landslide datasets show that SAM-CFFNet outperformed other comparative models in terms of landslide identification accuracy and achieved an intersection over union (IoU) of 77.13%, 55.26%, and 73.87% on the three datasets, respectively. Our ablation studies confirm the effectiveness of each module designed in our model. Moreover, we validated the justification for our CFFD design through comparative analysis with diverse decoders. SAM-CFFNet achieves precise landslide identification using remote sensing images, demonstrating the potential application of the SAM-based model in geohazard analysis.
Read full abstract