Abstract To enhance the performance of integrated inertial navigation system (INS) and global navigation satellite system (GNSS) during GNSS outages, this paper proposed a fusion positioning method based on predictive observation information and adaptive filter parameter. Combined with an adaptive Kalman filter (AKF) and a Gated Recurrent Unit neural network (NN) that directly relates the inertial measurement unit (IMU) output sequence to the error estimation, the hybrid information fusion system can provide effective corrections to compensate for horizontal position errors under the constraints of complex and dynamic vehicle movement data during GNSS outages. Meanwhile, the designed adaptive parameter of the integrated navigation filter can adjust the credibility of the state prediction section when the GNSS is reconnected, ensuring the system can switch rapidly between the INS/GNSS and INS/NN integrated modes. The performance of the proposed information fusion method has been experimentally validated using IMU and GNSS data collected in a vehicle navigation test conducted on a stretch of expressway. The comparison results indicate that the proposed algorithm has error suppression capabilities under various experimental constraints and demonstrates a degree of extendibility and reusability.