According to South Korea’s Ministry of Employment and Labor, approximately 25,000 construction workers suffered from various injuries between 2015 and 2019. Additionally, about 500 fatalities occur annually, and multiple studies are being conducted to prevent these accidents and quickly identify their occurrence to secure the golden time for the injured. Recently, AI-based video analysis systems for detecting safety accidents have been introduced. However, these systems are limited to areas where CCTV is installed, and in locations like construction sites, numerous blind spots exist due to the limitations of CCTV coverage. To address this issue, there is active research on the use of MEMS (micro-electromechanical systems) sensors to detect abnormal conditions in workers. In particular, methods such as using accelerometers and gyroscopes within MEMS sensors to acquire data based on workers’ angles, utilizing three-axis accelerometers and barometric pressure sensors to improve the accuracy of fall detection systems, and measuring the wearer’s gait using the x-, y-, and z-axis data from accelerometers and gyroscopes are being studied. However, most methods involve use of MEMS sensors embedded in smartphones, typically attaching the sensors to one or two specific body parts. Therefore, in this study, we developed a novel miniaturized IMU (inertial measurement unit) sensor that can be simultaneously attached to multiple body parts of construction workers (head, body, hands, and legs). The sensor integrates accelerometers, gyroscopes, and barometric pressure sensors to measure various worker movements in real time (e.g., walking, jumping, standing, and working at heights). Additionally, incorporating PPG (photoplethysmography), body temperature, and acoustic sensors, enables the comprehensive observation of both physiological signals and environmental changes. The collected sensor data are preprocessed using Kalman and extended Kalman filters, among others, and an algorithm was proposed to evaluate workers’ safety status and update health-related data in real time. Experimental results demonstrated that the proposed IMU sensor can classify work activities with over 90% accuracy even at a low sampling rate of 15 Hz. Furthermore, by integrating internal filtering, communication modules, and server connectivity within an application, we established a cyber–physical system (CPS), enabling real-time monitoring and immediate alert transmission to safety managers. Through this approach, we verified improved performance in terms of miniaturization, measurement accuracy, and server integration compared to existing commercial sensors.
Read full abstract