Blackleg disease, caused by the hemibiotrophic fungal pathogen Leptosphaeria maculans, poses a serious threat to Brassica crops and requires a broad understanding of the plant defence mechanisms. The Brassica. napus-L. maculans pathosystem provides a useful model to understand plant resistance response to hemibiotrophs. This review aims to explain the mechanisms underlying R-Avr interaction, signalling cascades, and the hypersensitive response (HR) produced by B. napus towards L. maculans, causing local cell death that restricts the pathogen to the site of infection. The role of transcription factors is pivotal to the process of HR, coordinating the regulation of genes involved in pathogen recognition and the activation of SA responsive genes and production of secondary metabolites. The R-Avr interaction signalling cascade involves production of reactive oxygen species (ROS), calcium ion influx, Salicylic acid (SA) hormonal signalling and mitogen activated protein kinases (MAPKs), which are critical in the HR in B. napus. The in-depth understanding of molecular signalling pathway of the R-Avr interaction between B. napus-L. maculans pathosystem provides valuable information for future research endeavours regarding enhancing disease resistance in Brassica crops.
Read full abstract