Influence maximization is a fundamental problem in social network analysis. This problem refers to the identification of a set of influential users as initial spreaders to maximize the spread of a message in a network. When such a message is spread, some users may be influenced by it. A common assumption of existing work is that the impact of a message is essentially binary: A user is either influenced (activated) or not influenced (non-activated). However, how strongly a user is influenced by a message may play an important role in this user’s attempt to influence subsequent users and spread the message further; existing methods may fail to model accurately the spreading process and identify influential users. In this article, we propose a novel approach to model a social network as a fuzzy graph where a fuzzy variable is used to represent the extent to which a user is influenced by a message (user’s activation level). By extending a diffusion model to simulate the spreading process in such a fuzzy graph, we conceptually formulate the fuzzy influence maximization problem for which three methods are proposed to identify influential users. Experimental results demonstrate the accuracy of the proposed methods in determining influential users in social networks.
Read full abstract