Plant spatial patterns critically influence community dynamics, including plant interactions, resource distribution, and community invasibility. Research suggests that resistance of western US plant communities to further invasion by the exotic annual grass Bromus tectorum may be linked to the positions of, and spacing between, perennial plants. In particular, gaps between aggregated clusters of perennial plants may facilitate B. tectorum invasion by providing safe sites for seed germination and establishment. We tested the effects of random, regular, and aggregated bunchgrass patterns, manipulated at both community (plot) and neighborhood scales, on B. tectorum biomass and spikelet production after experimental seed addition. We found strong evidence of treatment effects on both biomass and spikelets, which varied between treatments by approximately 2.5-fold. Mean biomass and spikelet counts were lowest in plots in which bunchgrasses were aggregated at both community and neighborhood scales, likely due to the increased competition. Although not statistically distinguishable from most other treatments, B. tectorum biomass and spikelet counts were highest in plots with bunchgrass patterns that were random at the community scale and aggregated at the neighborhood scale. These plots were characterized by relatively large gaps between bunchgrass clusters, suggesting that B. tectorum may exploit gaps between aggregated perennial plants. Our results support the emerging hypothesis that community resistance to B. tectorum invasion could be increased through manipulation of perennial vegetation to reduce basal gap size and connectivity.
Read full abstract