The influence of small additions of titanium on the hot ductility of C–Mn–Nb–Al steels has been examined. Titanium and nitrogen levels varied in the ranges 0·014–0·045 and 0·004–0·011 wt-%, respectively, so that a wide range of Ti/N ratios could be studied. The tensile specimens were cast and cooled at average cooling rates of 25, 100, and 200 K min-1 to test temperatures in the range 1100–800°C and strained to failure at a strain rate of 2 × 10-3 s-1. It was found that ductility in the titanium containing niobium steels improved with a decrease in the cooling rate, an increase in the size of the titanium containing precipitates, and a decrease in the volume fraction of precipitates. Coarser particles could be obtained by increasing the Ti/N ratio above the stoichiometric ratio for TiN and by testing at higher temperatures. However, ductility was generally poor for these titanium containing steels and it was equally poor when niobium was either present or absent. For steels with ∼0·005 wt-%N ductility was very poor at the stoichiometric Ti/N ratio of 3·4 : 1. Ductility was better at the higher Ti/N ratios but only two of the titanium containing niobium steels gave better ductility than the titanium free niobium containing steels and then only at temperatures below about 950–900°C. One of these steels had the lowest titanium addition (0·014 wt-%), thus limiting the volume fraction of fine Ti containing particles and the other had the highest Ti/N ratio of 8 : 1. However, even for these two steels ductility was worse than for the titanium free steels in the higher temperature range. The commercial implications of these results are discussed.
Read full abstract