Objective: to investigate the structure of the new VitaVallis dressing and determine the mechanism of its wound healing effect. Materials and methods. To study the structure of the VitaVallis dressing, transmission and scanning electron microscopy methods were used. The course of the wound process was studied in 60 male mice of the Balb / c line. The healing of a wound defect under the influence of dressings was studied on the model of a “skin flap”. Morphometric evaluation of histological preparations was carried out by computer-aided graphical analysis of samples. Statistical processing of the results was carried out using the parametric (Student's test) and non-parametric (Wilcoxon's test) methods. For analysis, the program Statistica 6.0 was used. Results. The structure of the VitaVallis dressing is randomly spaced polymer fibers with a diameter of 1.0—5.0 microns, on the surface of which nanosheet structures of aluminum oxyhydroxide (AlOOH) are immobilized. In vivo experiments have shown that the use of VitaVallis dressing in the treatment of model wounds in mice promotes accelerated healing and leads to better epidermis organotypic differentiation and accelerates the maturation of granulation tissue. This effect is due to a combination of factors such as: reduction of inflammatory processes due to the removal and retention of wound exudate, including pathogenic microflora, stimulation of marginal epithelization, protection of the formed granulation tissue from drying out and acceleration of its maturation. Conclusion. Analysis of the structure and mechanism of the wound-healing action of the dressing VitaVallis suggests the effectiveness of its use in the local treatment of wounds.