We study silver-zinc oxide type catalysts with and without the addition of alumina and perform structural analysis and activity tests for the hydrogenation of carbon dioxide. Adding alumina has a dispersing effect on the zinc oxide without structurally altering the silver phase. An alumina-surface enriched ZnO/Al2O3 phase is observed with an increased surface reducibility. Ag/ZnO has a high selectivity towards carbon monoxide (63 ± 12 %) and methane (24 ± 3 %) and low selectivity towards methanol (13 ± 0.5 %). Operando infrared (SSITKA-FTIR) and mass spectrometric product detection indicate methane formation via an adsorbed carbon monoxide (COads) intermediate. The selectivity changes gradually with increasing alumina content, up to 80 ± 3 % toward methanol, and 20 ± 4 % carbon monoxide without methane detection, combined with a tripling of the space time yield to 0.65 ± 0.02mmolMeOH*gcat-1*h−1 at 250 °C and 30 bar. Kinetic analysis suggests that the selectivity change originates from hindering the CO-pathway, while the formate pathway leading to methanol remains active.
Read full abstract