Abstract

Recycling of aluminium alloys is gaining significant attention due to its economic and environmental benefits. However, close loop recycled aluminium alloys can be adversely affected by impurities and alloying elements present in the recycled feedstock. In this study, the influence of three composites, namely alumina (Al2O3), ferric oxide (Fe2O3), and manganese (Mn), on the properties of recycled aluminium taldon scraps was investigated to enhance the tensile behaviour of the alloys. The effects of these composites on the mechanical properties, microstructure, and corrosion behaviour of the recycled aluminium alloys were evaluated through experimental characterization techniques. The results showed that the addition of these composites had a significant influence on the properties of recycled aluminium alloys, providing insights into the potential for improving the performance of recycled aluminium alloys through composite additions. The addition of Al2O3 enhanced the tensile strength by 44.18 % and the variation can be attributed to the strengthening of the dendritic zones by the formation of α-Al.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call