Design and analysis of a wind tunnel model for re-entry vehicle configuration is a prolonged and expensive mission. As the aerothermodynamics loads acting on the vehicle are based on geometry, various wind tunnel models need to be built for aerodynamic characterization by experimental procedure. Alternatively, the intention of this article is to present the influence of aerodynamic and aero acoustic characteristics of a typical re-entry capsule by computational fluid dynamics analysis. A typical re-entry capsule is designed using computational design software and it is imported to a computational fluid dynamics solver and flow simulations are done at various input conditions. Stanford University unstructured computational fluid dynamics solver is used for this purpose to solve complex, multiphysics analysis, and optimization tasks. Computational fluid dynamics results are presented to understand the influence of aerodynamic characteristics of a typical re-entry capsule, by visualizing the flow field around the command module at all the flow regimes like subsonic, supersonic, and hypersonic flows. The flow fields are studied in detail and regions of high flow unsteadiness due to wake separated flow zone are identified. Aeroacoustic loading on the command module at these regions especially at shock wave zone are predicted in the present investigation with high order of accuracy.