This paper presents results from numerical simulations of a non-premixed hydrogen-air rotating detonation combustor with radial injection. The fuel and air mass flow rate are varied in order to hold a unity global equivalence ratio. The calculations show that multiple detonation waves co-exist when the mass flow rate is increased. Conditional statistics of the detonation structure and combustion processes suggest similarities across co-existing waves. Quantification of the injection response to the rotation of a detonation indicates that at higher flow rate the refill time is short enough to allow for a quick and well mixed composition prior to the new front passage. Details of the combustion characteristics are analyzed. The results elucidate the correlation between initial injection conditions and detonation multiplicity on the overall physics within the combustor.
Read full abstract