The interaction between macrophages and adipocytes is known to aggravate inflammation of the adipose tissue, leading to decreased insulin sensitivity. Hence, attenuation of the inflammatory paracrine loop between macrophages and adipocytes is deemed essential to ameliorate insulin resistance and diabetes mellitus type 2. Methyl 2-(4'-methoxy-4'-oxobutanamide) benzoate (compound 1), a newly isolated compound from Jerusalem srtichoke (JA), has not been biologically characterized yet. Here, we investigated whether JA-derived compound 1 attenuates the inflammatory cycle between RAW 264.7 macrophages and 3T3-L1 adipocytes. Compound 1 suppressed the inflammatory response of RAW 264.7 cells to lipopolysaccharide through decreased secretion of IL-1β, IL-6, and TNF-α. Moreover, the mRNA expression of TNF-α, IL-6, IL-1β, MCP-1, and Rantes and MAPK pathway activation in 3T3-L1 adipocytes, incubated in macrophage-conditioned media, were inhibited. These findings suggest an anti-inflammatory effect of a newly extracted compound against adipose tissue inflammation and insulin resistance.
Read full abstract