Chemokines are believed to play a key role in the pathogenesis of acute pancreatitis. We have earlier shown that pancreatic acinar cells produce the chemokine monocyte chemotactic protein (MCP)-1 in response to caerulein hyperstimulation, demonstrating that acinar-derived MCP-1 is an early mediator of inflammation in acute pancreatitis. Blocking chemokine production or action is a major target for pharmacological intervention in a variety of inflammatory diseases, such as acute pancreatitis. 2-Methyl-2-[[1-(phenylmethyl)-1H-indazol-3yl]methoxy]propanoic acid (bindarit) has been shown to preferentially inhibit MCP-1 production in vitro in monocytes and in vivo without affecting the production of the cytokines IL-1, IL-6, or the chemokines IL-8, protein macrophage inflammatory-1alpha, and RANTES. The present study aimed to define the role of MCP-1 in acute pancreatitis with the use of bindarit. In a model of acute pancreatitis induced by caerulein hyperstimulation, prophylactic as well as therapeutic treatment with bindarit significantly reduced MCP-1 levels in the pancreas. Also, this treatment significantly protected mice against acute pancreatitis as evident by attenuated hyperamylasemia neutrophil sequestration in the pancreas (pancreatic MPO activity), and pancreatic acinar cell injury/necrosis on histological examination of pancreas sections.