Cisplatin induces acute renal failure in humans and mice.Tubular apoptosis, necrosis and inflammation are the primary pathogenesis of cisplatin-induced acute kidney injury(AKI). We previously reported that the depletion of Numb from proximal tubules exacerbates tubular cells apoptosis in cisplatin-induced AKI, however, the role of Numb in tubular necrosis and renal inflammation in cisplatin-induced AKI remains unclear. A mouse model of AKI was produced by cisplatin intraperitoneally injection in mice from proximal tubule-specific depletion of Numb (PT-Nb-KO) and their wild-type littermates (PT-Nb-WT) respectively. Renal Numb expression was determined by Western blotting. Renal morphological damage was examined by hematoxylin and eosin staining (H&E staining). Tubular necrosis was evaluated by histological study and the protein level of renal Mixed lineage kinase domain-like protein (MLKL) which is a molecular marker of necrosis. Leukocyte infiltration and pro-inflammatory cytokines was determined by immunostaining and quantitative real-time PCR (qRT-PCR) respectively.The protein level of Numb was dramatically decreased in kidneys of PT-Nb-KO mice compared with PT-Nb-WT mice. After cisplatin injection, a significant increase of tubular injury score and the protein level of renal MLKL were detected in PT-Nb-KO mice compared with those in PT-Nb-WT. In addition, the number of F4/80-positve and CD3-positive cells, markers for macrophages and neutraphils respectively, showed significantly increased in kidneys from PT-Nb-KO mice compared with those in PT-Nb-WT mice. Consistently, the gene expression of pro-inflammatory cytokines including TNF-α and MCP-1 in the kidneys was higher in PT-Nb-KO mice than those in PT-Nb-WT mice. Numb play additional protective role in cisplatin-induced AKI through ameliorating tubular necrosis and renal inflammation besides attenuating cisplatin-induced tubular apoptosis.
Read full abstract