Previous articleNext article No AccessTorricelli's Infinitely Long Solid and Its Philosophical Reception in the Seventeenth CenturyPaolo Mancosu and Ezio VailatiPaolo Mancosu Search for more articles by this author and Ezio Vailati Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Isis Volume 82, Number 1Mar., 1991 Publication of the History of Science Society Article DOIhttps://doi.org/10.1086/355637 Views: 12Total views on this site Citations: 16Citations are reported from Crossref Copyright 1991 History of Science Society, Inc.PDF download Crossref reports the following articles citing this article:Gregorio Baldin The Paradoxes of Matter, (Apr 2020): 153–183.https://doi.org/10.1007/978-3-030-41414-6_4Jorge Alberto Molina Catholicism and Mathematics in the Early Modernity, (Jan 2019): 47–67.https://doi.org/10.1007/978-3-030-01617-3_3Andrew Leahy The Method of Archimedes in the Seventeenth Century, The American Mathematical Monthly 125, no.33 (Feb 2018): 267–272.https://doi.org/10.1080/00029890.2018.1413857W. Robert Brown Power law transfer matrix and the acoustic impedance of Gabriel's Horn, The Journal of the Acoustical Society of America 142, no.33 (Sep 2017): 1384–1389.https://doi.org/10.1121/1.5001674Chanakya Wijeratne, Rina Zazkis On Painter’s Paradox: Contextual and Mathematical Approaches to Infinity, International Journal of Research in Undergraduate Mathematics Education 1, no.22 (May 2015): 163–186.https://doi.org/10.1007/s40753-015-0004-zPhilip Beeley Leibniz, Philosopher Mathematician and Mathematical Philosopher, (Apr 2015): 23–48.https://doi.org/10.1007/978-94-017-9664-4_2Antoni Malet, Marco Panza Wallis on Indivisibles, (Jan 2015): 307–346.https://doi.org/10.1007/978-3-319-00131-9_14Vincent Coll, Michael Harrison Gabriel's Horn: A Revolutionary Tale, Mathematics Magazine 87, no.44 (Dec 2017): 263–275.https://doi.org/10.4169/math.mag.87.4.263J. B. Shank What Exactly Was Torricelli’s “Barometer?”, (Aug 2012): 161–195.https://doi.org/10.1007/978-94-007-4807-1_7Thomas Sonar Indivisible und Infinitesimale in der Renaissance, (Apr 2011): 157–233.https://doi.org/10.1007/978-3-642-17204-5_5PAOLO MANCOSU MEASURING THE SIZE OF INFINITE COLLECTIONS OF NATURAL NUMBERS: WAS CANTOR’S THEORY OF INFINITE NUMBER INEVITABLE?, The Review of Symbolic Logic 2, no.0404 (Dec 2009): 612.https://doi.org/10.1017/S1755020309990128Paolo Palmieri Radical mathematical Thomism: beings of reason and divine decrees in Torricelli’s philosophy of mathematics, Studies in History and Philosophy of Science Part A 40, no.22 (Jun 2009): 131–142.https://doi.org/10.1016/j.shpsa.2009.03.005Herbert Breger Mathematik und Religion in der frühen Neuzeit, Berichte zur Wissenschaftsgeschichte 18, no.33 (Jan 1995): 151–160.https://doi.org/10.1002/bewi.19950180304Siegmund Probst Infinity and creation: the origin of the controversy between Thomas Hobbes and the Savilian professors Seth Ward and John Wallis, The British Journal for the History of Science 26, no.33 (Jan 2009): 271–279.https://doi.org/10.1017/S0007087400031058Paolo Mancosu Aristotelian logic and euclidean mathematics: Seventeenth-century developments of the quaestio de certitudine mathematicarum, Studies in History and Philosophy of Science Part A 23, no.22 (Jun 1992): 241–265.https://doi.org/10.1016/0039-3681(92)90034-4 John Neu Current Bibliography of the History of Science and Its Cultural Influences, 1991, Isis 82 (Oct 2015): 1–271.https://doi.org/10.1086/356021