In this paper, we report the results of our theoretical investigation on the interplay of superconductivity and disorder in two-dimensional (2D) systems. The effect of disorder on superconductivity of 2D systems was found analytically using Green’s function formalism. The results of our calculation revealed that disorder induced due to randomly distributed superconducting islands enhances decoherence of Cooper pairs and suppresses superconductivity. We have also determined the critical value of disorder at which the 2D system completely loses its superconducting properties. Below this critical value of disorder, the system acts as a superconductor, a system with zero electrical resistance. Above the critical value, it acts as an insulator, a system with infinite electric resistance. This is a fascinating result because a direct transition from the state of the infinite conductivity to the opposite extreme of infinite resistivity is unexpected in the theory of condensed matter physics.
Read full abstract