Integrated decision support tools are needed to investigate the tradeoffs of stormwater control measures (SCMs) and determine the optimal suite of SCMs based on the needs of watersheds. In this study, an urbanized watershed undergoing infill development (the Berkeley neighborhood located in Denver, CO, USA) was modeled using a modified version of the U.S. Environmental Protection Agency’s (EPA) System for Urban Stormwater Treatment and Analysis IntegratioN (SUSTAIN). The primary goal was to compare the relative performance between green and grey SCMs, use optimizations and a planning-level approach to assist in decision-making, and discuss how stakeholder and community preferences can shift which SCMs are optimal for the watershed. Green and grey SCMs have variable hydrologic performance based on design and function, and both offer benefits that may be important to decision makers. Our results showed that infiltration trenches and underground infiltration were optimal for reducing flow volumes while vegetated swales and underground detention were optimal for pollutant concentration reduction. Stakeholders value both of these benefits and so the optimal stormwater solution in the Berkeley neighborhood included a mix of green and grey SCMs. Determining the optimal SCMs while considering tradeoffs in costs and associated benefits was complex and multifaceted. Modeling results such as those presented here are critical for informing stakeholders’ decision-making process.
Read full abstract