Sequence processing is critical for complex behavior, and counting sequences hold a unique place underlying human numerical development. Despite this, the neural bases of counting sequences remain unstudied. We hypothesized that counting sequences in adults would involve representations in sensory, order, magnitude, and linguistic codes that implicate regions in auditory, supplementary motor, posterior parietal, and inferior frontal areas, respectively. In an fMRI scanner, participants heard four-number sequences in a 2 × 2 × 2 design. The sequences were adjacent or not (e.g., 5, 6, 7, 8 vs. 5, 6, 7, 9), ordered or not (e.g., 5, 6, 7, 8 vs. 8, 5, 7, 6), and were spoken by a voice of consistent or variable identity. Then, neural substrates of counting sequences were identified by testing for the effect of consecutiveness (ordered nonadjacent versus ordered adjacent, e.g., 5, 6, 7, 9 > 5, 6, 7, 8) in the hypothesized brain regions. Violations to consecutiveness elicited brain activity in the right inferior frontal gyrus (IFG) and the supplementary motor area (SMA). In contrast, no such activation was observed in the auditory cortex, despite violations in voice identity recruiting strong activity in that region. Also, no activation was observed in the inferior parietal lobule, despite a robust effect of orderedness observed in that brain region. These findings indicate that listening to counting sequences do not automatically elicit sensory or magnitude codes but suggest that the precise increments in the sequence are tracked by the mechanism for processing ordered associations in the SMA and by the mechanism for binding individual lexical items into a cohesive whole in the IFG.