Optimization of frame structures is formulated as a non-convex optimization problem, which is currently solved to local optimality. In this contribution, we investigate four optimization approaches: (i) general non-linear optimization, (ii) optimality criteria method, (iii) non-linear semidefinite programming, and (iv) polynomial optimization. We show that polynomial optimization solves the frame structure optimization to global optimality by building the (moment-sums-of-squares) hierarchy of convex linear semidefinite programming problems, and it also provides guaranteed lower and upper bounds on optimal design. Finally, we solve three sample optimization problems and conclude that the local optimization approaches may indeed converge to local optima, without any solution quality measure, or even to infeasible points. These issues are readily overcome by using polynomial optimization, which exhibits a finite convergence, at the prize of higher computational demands.