Define the admixture additive processes \t\t\tXγ,H,αa1,a2,a3,a4(t)≜a1B(t1)+a2Wγ(t2)+a3BH(t3)+a4Sα(t4)∈R,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\mathbb{X}^{a_{1}, a_{2}, a_{3}, a_{4}}_{\\gamma,H,\\alpha}(\\mathrm{t})\\triangleq a_{1}B(t_{1})+a_{2}W_{\\gamma}(t_{2})+a_{3}B_{H}(t_{3})+a_{4}S_{\\alpha}(t_{4}) \\in\\mathbb{R}, $$\\end{document} and the admixture multiplicative processes \t\t\tYγ,H,α(t)≜B(t1)⋅Wγ(t2)⋅BH(t3)⋅Sα(t4)∈R,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\mathbb{Y}_{\\gamma,H,\\alpha}(\\mathrm{t})\\triangleq B(t_{1})\\cdot W_{\\gamma}(t_{2})\\cdot B_{H}(t_{3})\\cdot S_{\\alpha}(t_{4})\\in\\mathbb{R}, $$\\end{document} where mathrm{t}=(t_{1},t_{2},t_{3},t_{4})inmathbb{R}_{+}^{mathrm{4}},a_{1},a_{2},a_{3},a_{4} are finite constants, B(t_{1}) is the standard Brownian motion, W_{gamma}(t_{2}) is the fractional integrated Brownian motion with index parameter gamma>-1/2, B_{H}(t_{3}) is the fractional Brownian motion with Hurst parameter Hin(0,1), S_{alpha}(t_{4}) is the stable process with index alphain(0,2], and they are independent of each other. The small deviation for mathbb{X}^{a_{1}, a_{2}, a_{3}, a_{4}}_{gamma,H,alpha}(mathrm{t}) and the lower bound of small deviation for mathbb{Y}_{gamma,H,alpha}(mathrm{t}) are obtained. As an application, limit inf type LIL is given for mathbb{X}^{a_{1}, a_{2}, a_{3}, a_{4}}_{gamma,H,alpha}(mathrm{t}).