Cdk5 is a member of cyclin-dependent kinase (Cdk), a proline-directed serine/threonine kinase, and plays a key role in normal neural development and function. Evidence of previous study showed that chronic inhibition of Cdk5 in hippocampal dentate gyrus (DG) blocked the development of depressive-like symptoms, suggesting that Cdk5 plays a role in development of depression. Forced swim test, novelty-suppressed feeding test, and learned helplessness were used to evaluate the cellular and molecular mechanisms underlying the behavioral regulation of Cdk5 inhibitors in rats. Two Cdk5 inhibitors butyrolactone and roscovitine were used to investigate the possible antidepressant-like actions of Cdk5 blockade and the potential mechanisms. Systemic administration of butyrolactone (200 mg/kg, IP) or roscovitine (100 mg/kg, IP) produced effective antidepressant-like actions. Moreover, infusion (5 mM) of GSK3β activator LY294002 into DG abolished the antidepressant-like actions of butyrolactone and roscovitine, suggesting that inhibition of GSK3β might be involved in the antidepressant effect of Cdk5 inhibitors. Moreover, pretreatment of LY294002 (5 mM) blocked the antidepressant-like effect of butyrolactone and roscovitine in learned helplessness. Additionally, inescapable footshock induced a significant increase of GSK3β activity, while butyrolactone and roscovitine decreased GSK3β activity. In contrast, pretreatment of LY294002 prevented the inhibitory effects of butyrolactone and roscovitine on GSK3β activation. Finally, a specific GSK3β inhibitor, SB216763 (1 ng, DG), demonstrated an effective antidepressant-like action. These findings demonstrate that systemic administration of Cdk5 inhibitors produced antidepressant-like actions and that inhibition of GSK3β is involved in behavioral response of Cdk5 inhibitors.