The article presents the results of work on an effective numerical study of selected transient states of a low-power electrical machine. The object of detailed research was a synchronized squirrel-cage induction motor. Its ability to work at a synchronous speed was enabled by obtaining reluctance torque, caused by an imposed asymmetry between the direct and quadrature reluctances of the rotor. The difference between the reluctances was achieved by changing the rotor geometry by milling additional deep grooves. The modifications of the rotor did not damage the continuity of the rotor cage. Imposed lots were arranged symmetrically around the rotor circumference. In order to study the performance of the modified motor, a parameterized, numerical model of the machine was developed to evaluate the impact of the geometry of the slots. The developed three dimensional (3D) model of the electromagnetic phenomena in the studied magnetic circuit employs the finite element method (FEM). The model takes into account the saturation of the machine’s magnetic circuit and the skew of the rotor cage bars as well as the mechanical equilibrium of the terrain system including the moment of inertia and frictional torque in the bearings as well as the load torque resulting from the operation of the internal fan. The simulation study concerned the starting process of the machine under different values of the load. The influence of the supply voltage phase angle at the moment of start-up and the initial position of the rotor in relation to the stator was investigated. In order to calibrate the model, tests of the physical object were performed. The corrections introduced concerned the magnetization characteristics of the magnetic circuit. The results obtained confirm the correctness of the adopted strategy of testing the operational properties of the considered engine.
Read full abstract