In this paper, numerical modeling of inertia friction welding (IFW) for Inconel718 was performed using ABAQUS/Explicit with a 3D finite-element (FE) model and the coupled thermo-mechanical analysis. A new thermal input model has been deduced according to the characteristics of IFW and law of conservation of energy. The evolution of temperature field as well as the deformation pattern of the inertia welded joint has been predicted. It is shown that the interface temperature firstly increases rapidly to about 1100 °C within 3 s and then increases slowly. The energy input rate at the interface during the IFW process is closely related to the rotational speed and friction torque of flywheels. The temperature distribution at the interface is very inhomogeneous especially at the initial stage and finally tends to become uniform with the increase of time. Consequently, the flash start to appear as the interface temperature becomes homogeneous relatively and the plastic flow of metal at the interface happens. The verifying trial was carried out and the predicted temperature was compared with the experimental data measured by means of thermocouples. The shape of flash in simulation result was contrasted with the true shape of specimen under the same welding conditions. It is noted that the simulation results agrees well with the experimental results.
Read full abstract