We study the class of random entire functions given by power series, in which the coefficients are formed as the product of an arbitrary sequence of complex numbers and two sequences of random variables. One of them is the Rademacher sequence, and the other is an arbitrary complex-valued sequence from the class of sequences of random variables, determined by a certain restriction on the growth of absolute moments of a fixed degree from the maximum of the module of each finite subset of random variables. In the paper we prove sharp Wiman–Valiron’s type inequality for such random entire functions, which for given p∈(0;1) holds with a probability p outside some set of finite logarithmic measure. We also considered another class of random entire functions given by power series with coefficients, which, as above, are pairwise products of the elements of an arbitrary sequence of complex numbers and a sequence of complex-valued random variables described above. In this case, similar new statements about not improvable inequalities are also obtained.