The fruits of Alpinia oxyphylla Miq., a broadly utilized traditional Chinese medicine, have a number of effects on the central nervous system (CNS). The main active constituents of Alpiniae oxyphyllae fructus (AOF) were nootkatone, tectochrysin, chrysin and protocatechuic acid. An immortalized human brain microvascular endothelial cell (hCMEC/D3) and astrocyte (HA1800) coculture model was used to investigate the permeability of the blood-brain barrier (BBB). The validation of ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) methods for the four compounds was conducted following industry guidelines. Calibration curves were generated with mean coefficients (R2) better than 0.99. The inter-day and intra-day precisions were less than 8.53% and 7.12%, respectively. The accuracies were lower than ± 11.57%, and recoveries were greater than 86.07%. The samples of the transport experiment were examined, and the apparent permeability coefficients (Papp) were calculated. The efflux ratios of the four compounds are all less than 2. The Papp values of protocatechuic acid, chrysin, nootkatone, tectochrysin were at the level of 10−5, 10−6, 10−6, and 10−7 cm/s, respectively. All four compounds crossed the BBB by passive diffusion, with protocatechuic acid having high permeability, and tectochrysin having poor permeability. This research indicated the permeability of protocatechuic acid, chrysin, nootkatone and tectochrysin through the BBB and offered a foundation for related research on AOF in the treatment of CNS illnesses.
Read full abstract