We present a tomographic velocity and anisotropy model of the uppermost mantle beneath the Tibetan Plateau and the adjacent regions. The investigation analyzed 105,385 Pn phase readings from the International Seismological Centre (ISC) and the China Earthquake Data Center. The average Pn velocity under the study area is approximately 8.15 km/s, with velocity perturbations up to 3–4%. We find high Pn velocities under the Indian Plate and in the Tarim and Sichuan basins, low Pn velocities under the Hindu Kush and in Myanmar and the adjacent region, and especially low Pn velocities under the area north of the Indus-Yarlung Zangbo suture. The high Pn velocity anomalies of the Indian Plate are discontinuous at the collision region in the east-west direction, indicating that the Indian Plate probably subducts in a piecewise manner. Distributions of Pn velocities are used to validate mechanisms for the subduction of the Indian Plate presented in previous studies. In addition, Pn anisotropy is obtained simultaneously with Pn velocity. At plate collision zones, the fast Pn anisotropy direction is parallel to the direction of the collision edge. We validate the existence of Pn anisotropy under these regions and discuss the relationship of anisotropy with tectonic structure and plate movement.