Electromagnetic surveys using a vertical transmitter loop are common in land, marine, and airborne geophysical exploration. Most of these horizontal magnetic dipole (HMD) systems operate in the frequency domain, measuring the time derivative of the induced magnetic fields, and therefore a majority of studies have focused on this subset of field measurements. We examine the time-domain electromagnetic response of a HMD including the electric fields and corresponding smoke rings produced in a conductive half-space. Cases of a dipole at the surface and buried within the earth are considered. Results indicate that when the current in the transmitter is rapidly switched off, a single smoke ring is produced within the plane of the vertical transmitter loop, which is then distorted by the air-earth interface. In this situation, the circular smoke ring, which would normally diffuse symmetrically away from the source in a whole space, is approximately transformed into an ellipse, with a vertical major axis at an early time and a horizontal major axis at a late time. As measured from the location of the transmitter, the depth of investigation and lateral footprint of such a system increases with burial depth. It is also observed that the electric field measured in the direction of the magnetic dipole only contains a secondary response related to the charge accumulation on any horizontal conductivity boundaries because the primary field is always absent. This field component can be expressed analytically in terms of a static and time-varying field, the latter term adding spatial complexity to the total horizontal electric field at the earth surface at early times. Applications of this theoretical study include the design of time-domain induction-logging tools, crossborehole electromagnetic surveys, underground mine expansion work, mine rescue procedures, and novel marine electromagnetic experiments.