The Y, F, and Ag tridoped TiO2/SnO2 composite nanocrystalline film (YFAg–TS) with prominent photocatalytic performance was prepared by the modified sol–gel method and was characterized by utilizing X-ray diffraction (XRD), differential thermal and thermogravimetric (DTA–TG) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) method, ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS), and photoluminescence (PL). The XRD and DTA–TG results expose that the YFAg–TS catalyst is a mixed phase consisting of anatase, rutile, and chlorargyrite, which is beneficial to improving the photocatalytic performance of TiO2. The SEM, TEM, and BET results disclose that the YFAg–TS film has smaller nanoparticles, higher specific surface area, and narrower pore size compared with pure TiO2 film. The XRD and TEM results exhibit that a part of yttrium can enter the TiO2 lattice to induce lattice distortion. The XPS results confirm the presence of Y3+ state in the YFAg–TS sample, and Y3+ ions can act as the trapping site of electrons to expedite the separation of electrons and holes. The UV–vis DRS results reveal that the YFAg–TS film has an obvious absorption edge shift and a narrower bandgap (2.70 eV) compared with pure TiO2 film. The PL results show that the YFAg–TS film has the highest photogenerated electrons and holes separation efficiency and charges transfer efficiency among all samples. The photocatalytic activity of the YFAg–TS was assessed by monitoring the degradation of methyl green and formaldehyde solution. The results manifest that the YFAg–TS film has high stability and excellent photocatalytic performance. The possible synergistic photocatalytic mechanism of YFAg–TS films has been discussed in this paper.
Read full abstract