We investigated the effect of pre-sowing seed treatment with endophytic Bacillus subtilis 10-4 (B. subtilis) on spring and winter wheat (Triticum aestivum L.; cultivars Ekada-70 (Ek) and Scepter (Sc), respectively) growth and tolerance under 1-24 h of drought stress, modulated by 12% polyethylene glycol 6000 (PEG). The results showed that drought decreased transpiration intensity (TI), root relative water content (RWC), osmotic potential (Ψπ) of cell sap, and induced proline accumulation and electrolyte leakage (EL) in both wheat cultivars. It was revealed that Sc was more responsive to PEG and B. subtilis treatments than Ek. Under drought, Ek did not significantly change root length, shoot height, or dry biomass. The pretreatment of wheat plants with B. subtilis performed significantly better under drought conditions through the enhanced TI, RWC, and Ψπ of the cell sap in comparison with the plants treated with 12% PEG alone. B. subtilis also reduced stress-caused EL, especially in the Sc cultivar. Under water deficit wheat seedlings, pretreated with B. subtilis, have a higher proline accumulation in comparison to untreated stressed plants. Taken together, our results demonstrate the crucial role of endophytic B. subtilis in ameliorating the adverse effects of water stress on the water balance of both winter and spring wheat cultivars.
Read full abstract