Abstract

The present experiment was conducted to evaluate the metribuzin-induced stress response in Vigna radiata and to explore the ameliorative role of exogenous application of plant growth regulators (PGRs) against metribuzin toxicity by assessing important biochemical and yield parameters. Prior to the field experiment, dose standardization experiments were performed, and EC50 was calculated for metribuzin. On day 21, field grown V. radiata plants were treated with graded concentrations of metribuzin (0-1000mg [Formula: see text]). Plants treated with 600mg [Formula: see text] (EC50) and 1000mg [Formula: see text] (highest dose) of metribuzin were co-treated individually and simultaneously with gibberellic acid-3 (GA), indole-3 acetic acid (IAA), and salicylic acid (SA). After 7days of treatment, leaf tissues were analyzed for biochemical parameters, whereas those related to yield were recorded during harvest. The result of this study indicated that metribuzin treatment to V. radiata resulted in increase in lipid peroxidation and reduce chlorophyll and carotenoid contents as well as yield parameters. However, metribuzin-treated plants induced proline accumulation and activity of antioxidant enzymes. Exogenous application of GA, IAA, and SA significantly reduced lipid peroxidation and increased contents of photosynthetic pigments, proline, and antioxidant enzymes thereby increasing yield parameters. It was observed that during metribuzin stress, SA exhibited a better ameliorative response out of the three exogenously applied PGRs, while the combined use of all PGRs exhibited much improved ameliorative response on biochemical and yield parameters of plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call