The intracellular pH of the halotolerant green algae Dunaliella tertiolecta, was determined by the distribution of 5,5-dimethyl-2(14C)-oxalolidine-2,5-dione (DMO) between the cell and the surrounding medium. 5,5-dimethyl-2(14C)oxalolidine-2,4-dione was not metabolized by the algal cells. The intracellular pH of Dunaliella tertiolecta was 6.8 in the dark and 7.4 in the light. During a salt stress, after two hours, the intracellular pH was increased by 0.2 pH units in both light and dark. The salt stressed cells maintained a constant pH of about 7.5 over the pH range of 6.5 to 8.5. Because of the relatively low permeability coefficient of the plasma membrane for DMO, this technique does not permit rapid pH determinations during the induction period after a salt stress. The magnitude of the salt induced pH changes measured 2 h after the salt stress implies a minor importance of this alkalization in this time range, but does not exclude a larger importance of pH changes for osmoregulation during the induction period.