Acetone, a common volatile organic compound (VOC), poses health risks even at low concentrations. Current acetone sensors are costly and require specialized equipment and expertise. This work develops a novel vapor sensor for determining acetone vapor concentration using the speckle patterns generated by liquid crystal gels (LCGs). The vapor sensor comprises a LCG film prepared by the phase separation of a mixture containing polystyrene microspheres and liquid crystals (LCs). The orientation of the LC molecules changes when the LCG film is exposed to an acetone vapor environment, altering the equivalent refractive indices of the LC domains. This leads to a change in the scattering state of the LCG film under laser illumination, forming different speckle patterns. The concentration of acetone vapor is determined by calculating the correlation coefficient of the speckle images, where the sensitivity and limit of detection of the sensor are 4×10-4 ppm-1 and 754.05 ppm, respectively. The developed correlated laser speckle-based optical system is simpler, less expensive, and more stable than traditional LC film vapor sensors. This acetone gas sensor has potential applications in industrial and indoor air quality testing.